Unique homogeneity, II

Jan van Mill

VU University Amsterdam and Technical University Delft

Hejnice 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Construction of a uniquely homogeneous space

Theorem (vM, 1983)

There is nontrivial separable metric UH Baire space.

There is a Boolean topological group G such that $G \approx \ell^2$. This means that x + x = 0 for every $x \in G$.

This space surfaces already in Halmos, Measure Theory. That it is homeomorphic to ℓ^2 was shown by Bessaga and Pełczyński (±1970).

 $\mathcal{M} = \{A \subseteq [0,1] : A \text{ measurable}\}, \ \mathcal{N} = \{A \in \mathcal{M} : \lambda(A) = 0\}.$ Consider \mathcal{M}/\mathcal{N} with metric and group operation

$$d([A], [B]) = \lambda(A \triangle B), \qquad [A] + [B] = [A \triangle B].$$

NOC E VEN

Put Let \mathcal{F} denote the collection of all functions f such that

- dom(f) and range(f) are G_{δ} -subsets of G,
- $f: \operatorname{dom}(f) \to \operatorname{range}(f) \text{ is a homeomorphism.}$

Let $\{f_{\alpha} : \alpha < \mathfrak{c}, \alpha \text{ even}\}$ enumerate \mathcal{F} , and let $\{K_{\alpha} : \alpha < \mathfrak{c}, \alpha \text{ odd}\}$ enumerate the collection of all Cantor subsets of G.

By transfinite induction on $\alpha < \mathfrak{c}$, we will construct subgroups H_{α} of G and subsets V_{α} of G such that the following conditions are satisfied:

• if
$$\beta < \alpha$$
 then $H_{\beta} \subseteq H_{\alpha}$ and $V_{\beta} \subseteq V_{\alpha}$,

 $\ \, \textbf{if } \alpha \text{ is odd then } H_{\alpha} \cap K_{\alpha} \neq \emptyset,$

• if α is even and

$$|\{x \in \operatorname{dom}(f_{\alpha}) : f_{\alpha}(x) \notin \langle\!\langle \bigcup_{\beta < \alpha} H_{\beta} \cup \{x\} \rangle\!\rangle\}| = \mathfrak{c}$$

then there exits $x \in \text{dom}(f_{\alpha}) \cap (H_{\alpha} \setminus \bigcup_{\beta < \alpha} H_{\beta})$ such that $f_{\alpha}(x) \in V_{\alpha}$.

Put
$$H^{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$$
, $V^{\alpha} = \bigcup_{\beta < \alpha} V_{\beta}$, and
 $S = \{x \in \operatorname{dom}(f_{\alpha}) : f_{\alpha}(x) \notin \langle\!\langle H^{\alpha} \cup \{x\} \rangle\!\rangle\}.$

Observe that since G is Boolean, we have for every $x \in S$,

$$\langle\!\langle H^{\alpha} \cup \{x\} \rangle\!\rangle = H^{\alpha} \cup (x + H^{\alpha}).$$

Now assume first that α is even, that $|S| = \mathfrak{c}$, and pick $x \in S \setminus ((H^{\alpha} + V^{\alpha}) \cup H^{\alpha})$. It is clear that such an x exists by cardinality considerations. Now put

$$H_{\alpha} = \langle\!\langle H^{\alpha} \cup \{x\} \rangle\!\rangle = H^{\alpha} \cup (x + H_{\alpha}), \qquad V_{\alpha} = V^{\alpha} \cup \{f_{\alpha}(x)\}.$$

Then $H_{\alpha} \cap V_{\alpha} = \emptyset$. The case that α is odd can be treated analogously since every Cantor set has size \mathfrak{c} . Put $H = \bigcup_{\alpha < \mathfrak{c}} H_{\alpha}$. We claim that H is UH. H is a Baire space since it intersects all Cantor subsets of the Polish space G (observe that it hits every dense G_{δ} -subset of Hsince such a set contains a Cantor set, hence H is of the second category in itself and hence a Baire space being a second countable topological group).

Let $f: H \to H$ be a homeomorphism. By Lavrentieff, there exist G_{δ} -subsets A and B in G such that f can be extended to a homeomorphism $\overline{f}: A \to B$. Pick α such that $\overline{f} = f_{\alpha}$.

CASE 1:
$$|\{x \in A : f_{\alpha}(x) \notin \langle \langle \bigcup_{\beta < \alpha} H_{\beta} \cup \{x\} \rangle \rangle = \mathfrak{c} \}.$$

Then at stage α we picked $x \in H_{\alpha}$ such that $f_{\alpha}(x) \in V_{\alpha}$. Hence there exists $x \in H$ such that $f_{\alpha}(x) \notin H$. But f_{α} extends f, hence $f_{\alpha}(x) = f(x) \in H$, which is a contradiction.

CASE 2: If $T = \{x \in A : f_{\alpha}(x) \notin \langle\!\langle H^{\alpha} \cup \{x\}\rangle\!\rangle\}$, where $H^{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$, then $|T| < \mathfrak{c}$.

For $h \in H^{\alpha}$, put $E_h = \{x \in A : f_{\alpha}(x) = x + h\}$. Then E_h is a closed subset of A, $E_h \cap T = \emptyset$, and $E_h \cap E_{h'} = \emptyset$ if $h \neq h'$. Put $F_h = E_h \setminus f_{\alpha}^{-1}(H^{\alpha})$.

CLAIM: At most one F_h is nonempty.

Assume that there are distinct $s, t \in H^{\alpha}$ such that both F_s and F_t are nonempty, say $x \in F_s$ and $y \in F_t$.

Observe that $G \setminus A$ is countable, since otherwise it would contain a Cantor set which would intersect H by construction, which is impossible since A contains H.

Hence

$$|f_{\alpha}^{-1}(H^{\alpha}) \cup (G \setminus A) \cup T| < \mathfrak{c}$$

and since $x, y \notin E = f_{\alpha}^{-1}(H^{\alpha}) \cup (G \setminus A) \cup T$, there is an arc J in G that connects x and y and misses E. Observe that

$$J \subseteq \bigcup_{h \in H^{\alpha}} F_h \subseteq \bigcup_{h \in H^{\alpha}} E_h.$$

Put $K = \{h \in H^{\alpha} : F_h \cap J \neq \emptyset\}$. By assumption, $|K| \ge 2$. Hence $|K| > \omega$ by the Sierpinski Theorem. Since $|K| < \mathfrak{c}$, we have a contradiction in the presence of the CH. K is not complete being uncountable and of size less than \mathfrak{c} , and hence not closed in C. Pick $h \in K$ such that $h \to h \notin K$. For

hence not closed in G. Pick $k_n \in K$ such that $k_n \to h \notin K$. For every n pick $x_n \in J \cap F_{k_n}$. We may assume without loss of generality that $x_n \to x$. Then

$$f_{\alpha}(x) = \lim_{n \to \infty} f_{\alpha}(x_n) = \lim_{n \to \infty} x_n + k_k = x + k.$$

Since $x \in J$, there exists $h \in K$ such that $x \in F_h \subseteq E_h$. Hence $f_{\alpha}(x) = x + h$ so that $k = h \in K$, contradiction.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

CLAIM: At least one of the collection $\{F_h : h \in H^{\alpha}\}$ is nonempty.

If not, then $f_{\alpha}(H \setminus T) \subseteq H^{\alpha}$, which is a contradiction since f_{α} is injective.

Hence there is a unique $h \in H^{\alpha}$ such that $F_h \neq \emptyset$. Now consider E_h . The complement of A is countable, as we observed above. The set E_h is closed, hence if it would be a proper subset of A its complement would have cardinality \mathfrak{c} . But it has size less than \mathfrak{c} . This implies that $E_h = A$, hence $f_{\alpha}(x) = x + h$ for every $x \in A$.

This implies that every homeomorphism of H is a translation of the form $x \mapsto x + h$, hence H is uniquely homogeneous.

The construction can be improved so that H has the following property: every continuous function $f: H \to H$ is either constant, or a translation.

The weight of H is ω .

Question

Are there UH spaces of arbitrarily large weight?

Arhangelskii and vM (2012) proved that there is a family $\{H_{\alpha} : \alpha < 2^{\mathfrak{c}}\}$ of such groups such that if $\alpha \neq \beta$, then every continuous function $f : H_{\beta} \to H_{\alpha}$ is constant. This implies that the product $\prod_{\alpha < 2^{\mathfrak{c}}} H_{\alpha}$ is UH and has weight $2^{\mathfrak{c}}$. But this is cheating, it is not a new construction.

A space X is called 2-flexible if $\forall a, b \in X$, $\forall O_b$, $\exists O_a$, $\forall z \in O_a$, $\exists h \in H(X)$, h(a) = z and $h(b) \in O_b$. A space X is called *skew* 2-flexible if $\forall a, b \in X$, $\forall O_b$, $\exists O_a$, $\forall z \in O_a$, $\exists h \in H(X)$, h(a) = z and $b \in g(O_b)$.

Theorem

If X is locally compact, separable metric, homogeneous, then X is both 2-flexible and skew 2-flexible.

Application of the Effros Theorem

Example

- There is a homogeneous Polish space which is skew 2-flexible but not 2-flexible. *Hence Effros does not work for Polish spaces.*
- There is a UH 2-flexible space that is not skew 2-flexible. Open whether such a space can be Polish.

Theorem (Arhangelskii and vM)

Let X be UH. TFAE

• X is 2-flexible.

2 X is Abelian. (for all $f, g \in H(X)$ we have $f \circ g = g \circ f$.)

Theorem (Arhangelskii and vM)

Let X be UH. TFAE

- X is skew 2-flexible.
- 2 X is Boolean. (for all $f \in H(X)$ we have $f \circ f = id_X$.)

Hence for a UH space, skew 2-flexibility implies 2-flexibility. The converse is not true.