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Construction of a uniquely homogeneous space

Theorem (vM, 1983)

There is nontrivial separable metric UH Baire space.

There is a Boolean topological group G such that G ≈ `2. This
means that x+ x = 0 for every x ∈ G.
This space surfaces already in Halmos, Measure Theory. That it is
homeomorphic to `2 was shown by Bessaga and Pe lczyński
(±1970).
M = {A ⊆ [0, 1] : A measurable}, N = {A ∈M : λ(A) = 0}.
Consider M/N with metric and group operation

d([A], [B]) = λ(A4B), [A] + [B] = [A4B].

Put Let F denote the collection of all functions f such that
1 dom(f) and range(f) are Gδ-subsets of G,
2 f : dom(f)→ range(f) is a homeomorphism.
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Let {fα : α < c, α even} enumerate F , and let
{Kα : α < c, α odd} enumerate the collection of all Cantor subsets
of G.
By transfinite induction on α < c, we will construct subgroups Hα

of G and subsets Vα of G such that the following conditions are
satisfied:

1 if β < α then Hβ ⊆ Hα and Vβ ⊆ Vα,

2 Hα ∩ Vα = ∅, |Hα| ≤ |α| · ω, |Vα| ≤ |α| · ω,

3 if α is odd then Hα ∩Kα 6= ∅,
4 if α is even and

|{x ∈ dom(fα) : fα(x) 6∈ 〈〈
⋃
β<α

Hβ ∪ {x}〉〉}| = c

then there exits x ∈ dom(fα) ∩ (Hα \
⋃
β<αHβ) such that

fα(x) ∈ Vα.
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Put Hα =
⋃
β<αHβ, V α =

⋃
β<α Vβ, and

S = {x ∈ dom(fα) : fα(x) 6∈ 〈〈Hα ∪ {x}〉〉}.

Observe that since G is Boolean, we have for every x ∈ S,

〈〈Hα ∪ {x}〉〉 = Hα ∪ (x+Hα).

Now assume first that α is even, that |S| = c, and pick
x ∈ S \ ((Hα + V α) ∪Hα). It is clear that such an x exists by
cardinality considerations. Now put

Hα = 〈〈Hα ∪ {x}〉〉 = Hα ∪ (x+Hα), Vα = V α ∪ {fα(x)}.

Then Hα ∩ Vα = ∅. The case that α is odd can be treated
analogously since every Cantor set has size c.
Put H =

⋃
α<cHα. We claim that H is UH.
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H is a Baire space since it intersects all Cantor subsets of the
Polish space G (observe that it hits every dense Gδ-subset of H
since such a set contains a Cantor set, hence H is of the second
category in itself and hence a Baire space being a second countable
topological group).
Let f : H → H be a homeomorphism. By Lavrentieff, there exist
Gδ-subsets A and B in G such that f can be extended to a
homeomorphism f̄ : A→ B. Pick α such that f̄ = fα.

CASE 1: |{x ∈ A : fα(x) 6∈ 〈〈
⋃
β<αHβ ∪ {x}〉〉 = c}.

Then at stage α we picked x ∈ Hα such that fα(x) ∈ Vα. Hence
there exists x ∈ H such that fα(x) 6∈ H. But fα extends f , hence
fα(x) = f(x) ∈ H, which is a contradiction.

CASE 2: If T = {x ∈ A : fα(x) 6∈ 〈〈Hα ∪ {x}〉〉}, where
Hα =

⋃
β<αHβ, then |T | < c.
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For h ∈ Hα, put Eh = {x ∈ A : fα(x) = x+ h}. Then Eh is a
closed subset of A, Eh ∩ T = ∅, and Eh ∩ Eh′ = ∅ if h 6= h′.
Put Fh = Eh \ f−1α (Hα).

CLAIM: At most one Fh is nonempty.

Assume that there are distinct s, t ∈ Hα such that both Fs and Ft
are nonempty, say x ∈ Fs and y ∈ Ft.
Observe that G \A is countable, since otherwise it would contain a
Cantor set which would intersect H by construction, which is
impossible since A contains H.
Hence

|f−1α (Hα) ∪ (G \A) ∪ T | < c

and since x, y 6∈ E = f−1α (Hα) ∪ (G \A) ∪ T , there is an arc J in
G that connects x and y and misses E. Observe that
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J ⊆
⋃

h∈Hα

Fh ⊆
⋃

h∈Hα

Eh.

Put K = {h ∈ Hα : Fh ∩ J 6= ∅}. By assumption, |K| ≥ 2. Hence
|K| > ω by the Sierpinski Theorem. Since |K| < c, we have a
contradiction in the presence of the CH.
K is not complete being uncountable and of size less than c, and
hence not closed in G. Pick kn ∈ K such that kn → h 6∈ K. For
every n pick xn ∈ J ∩ Fkn . We may assume without loss of
generality that xn → x. Then

fα(x) = lim
n→∞

fα(xn) = lim
n→∞

xn + kk = x+ k.

Since x ∈ J , there exists h ∈ K such that x ∈ Fh ⊆ Eh. Hence
fα(x) = x+ h so that k = h ∈ K, contradiction.
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CLAIM: At least one of the collection {Fh : h ∈ Hα} is nonempty.

If not, then fα(H \ T ) ⊆ Hα, which is a contradiction since fα is
injective.

Hence there is a unique h ∈ Hα such that Fh 6= ∅. Now consider
Eh. The complement of A is countable, as we observed above.
The set Eh is closed, hence if it would be a proper subset of A its
complement would have cardinality c. But it has size less than c.
This implies that Eh = A, hence fα(x) = x+ h for every x ∈ A.

This implies that every homeomorphism of H is a translation of
the form x 7→ x+ h, hence H is uniquely homogeneous.

The construction can be improved so that H has the following
property: every continuous function f : H → H is either constant,
or a translation.
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The weight of H is ω.

Question

Are there UH spaces of arbitrarily large weight?

Arhangelskii and vM (2012) proved that there is a family
{Hα : α < 2c} of such groups such that if α 6= β, then every
continuous function f : Hβ → Hα is constant. This implies that
the product

∏
α<2c Hα is UH and has weight 2c.

But this is cheating, it is not a new construction.

A space X is called 2-flexible if ∀a, b ∈ X, ∀Ob, ∃Oa, ∀z ∈ Oa,
∃h ∈ H(X), h(a) = z and h(b) ∈ Ob.
A space X is called skew 2-flexible if ∀a, b ∈ X, ∀Ob, ∃Oa,
∀z ∈ Oa, ∃h ∈ H(X), h(a) = z and b ∈ g(Ob).
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Theorem

If X is locally compact, separable metric, homogeneous, then X is
both 2-flexible and skew 2-flexible.

Application of the Effros Theorem

Example

1 There is a homogeneous Polish space which is skew 2-flexible
but not 2-flexible. Hence Effros does not work for Polish
spaces.

2 There is a UH 2-flexible space that is not skew 2-flexible.
Open whether such a space can be Polish.
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Theorem (Arhangelskii and vM)

Let X be UH. TFAE

1 X is 2-flexible.

2 X is Abelian. (for all f, g ∈ H(X) we have f ◦ g = g ◦ f .)

Theorem (Arhangelskii and vM)

Let X be UH. TFAE

1 X is skew 2-flexible.

2 X is Boolean. (for all f ∈ H(X) we have f ◦ f = idX .)

Hence for a UH space, skew 2-flexibility implies 2-flexibility. The
converse is not true.


